题目内容
数列{an}满足a1=1,an=
an-1+1,(n≥2)
(1)写出数列{an}的前5项;
(2)求数列{an}的通项公式.
| 1 | 2 |
(1)写出数列{an}的前5项;
(2)求数列{an}的通项公式.
分析:(1)由数列{an}满足a1=1,an=
an-1+1,(n≥2),分别令n=2,3,4,5,能够求出数列{an}的前5项.
(2)由a1=1=
,a2=
,a3=
,a4=
,a5=
,猜想an=
.再用数学归纳法证明.
| 1 |
| 2 |
(2)由a1=1=
| 1 |
| 20 |
| 3 |
| 2 |
| 7 |
| 22 |
| 15 |
| 23 |
| 31 |
| 24 |
| 2n-1 |
| 2n-1 |
解答:解:(1)∵数列{an}满足a1=1,an=
an-1+1,(n≥2)
∴a2=
×1+1=
,
a3=
×
+1=
,
a4=
×
+1=
,
a5=
×
+1=
.
(2)由a1=1=
,a2=
,a3=
,a4=
,a5=
,
猜想an=
.
用数学归纳法证明:
①n=1时,a1=
=1,成立;
②假设n=k时,等式成立,
即ak=
,
则当n=k+1时,ak+1=
ak+1=
×
+1=
,也成立,
由①②知,an=
.
| 1 |
| 2 |
∴a2=
| 1 |
| 2 |
| 3 |
| 2 |
a3=
| 1 |
| 2 |
| 3 |
| 2 |
| 7 |
| 4 |
a4=
| 1 |
| 2 |
| 7 |
| 4 |
| 15 |
| 8 |
a5=
| 1 |
| 2 |
| 15 |
| 8 |
| 31 |
| 16 |
(2)由a1=1=
| 1 |
| 20 |
| 3 |
| 2 |
| 7 |
| 22 |
| 15 |
| 23 |
| 31 |
| 24 |
猜想an=
| 2n-1 |
| 2n-1 |
用数学归纳法证明:
①n=1时,a1=
| 21-1 |
| 21-1 |
②假设n=k时,等式成立,
即ak=
| 2k-1 |
| 2k-1 |
则当n=k+1时,ak+1=
| 1 |
| 2 |
| 1 |
| 2 |
| 2k-1 |
| 2k-1 |
| 2k+1-1 |
| 2k |
由①②知,an=
| 2n-1 |
| 2n-1 |
点评:本题考查数列的前五项的求法,考查数列的通项公式的求法.解题时要认真审题,仔细解答,注意数学归纳法的合理运用.
练习册系列答案
相关题目