题目内容
8.已知函数f(x)=$\left\{\begin{array}{l}{ax+2,x<1}\\{{x}^{2}-ax+2,x≥1}\end{array}\right.$在R上单调递增,则实数a的取值范围为(0,$\frac{1}{2}$].分析 若f(x)=$\left\{\begin{array}{l}{ax+2,x<1}\\{{x}^{2}-ax+2,x≥1}\end{array}\right.$在R上单调递增,则每段函数均为增函数,且当x=1时,前一段函数的函数值不大于后一段函数的函数值,由此可构造满足条件的不等式组,解出实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{ax+2,x<1}\\{{x}^{2}-ax+2,x≥1}\end{array}\right.$在R上单调递增,
则$\left\{\begin{array}{l}a>0\\ \frac{a}{2}≤1\\ a+2≤3-a\end{array}\right.$,
解得:a∈(0,$\frac{1}{2}$],
故答案为:(0,$\frac{1}{2}$]
点评 本题考查的知识点是函数单调性的性质,熟练掌握分段函数的单调性是解答的关键.
练习册系列答案
相关题目
17.函数y=$\frac{1}{x+3}$在x∈[-1,1]上的最小值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 4 |