题目内容
函数y=sinx(cosx-sinx)(0<x<
)的最大值是______.
| π |
| 4 |
函数y=sinx(cosx-sinx)(0<x<
)
=sinxcosx-sin2x
=
sin2x-
(1-cos2x)
=
sin2x+
cos2x-
=
sin(2x+
)-
,
∵0<x<
,
∴x=
时,函数y=sinx(cosx-sinx)(0<x<
)的最大值是
.
故答案为:
.
| π |
| 4 |
=sinxcosx-sin2x
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
∵0<x<
| π |
| 4 |
∴x=
| π |
| 8 |
| π |
| 4 |
| ||
| 2 |
故答案为:
| ||
| 2 |
练习册系列答案
相关题目