题目内容
如图,在正方体ABCD-A1B1C1D1中,若E为A1C1与B1D1的交点,F为DD1的中点,则直线EF与直线BC所成角的大小为________(用反三角函数值表示).
分析:设正方体ABCD-A1B1C1D1的棱长为2,以AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,则
解答:设正方体ABCD-A1B1C1D1的棱长为2,以AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
则B(1,0,0),C(1,1,0),
E(1,1,2),F(0,2,1),
设直线EF与直线BC所成角为α,
则
=|
=
∴α=
故答案为:
点评:本题考查两条异面直线所成角的大小,解题时要认真审题,合理地建立空间直角坐标系,利用向量法求解两条异面直线所成角的大小.
练习册系列答案
相关题目