题目内容
函数y=2cosx(x∈R)是( )A.周期为2π的奇函数
B.周期为2π的偶函数
C.周期为π的奇函数
D.周期为π的偶函数
【答案】分析:根据余弦函数y=cosx(x∈R)是周期等于2的偶函数,可得结论.
解答:解:由余弦函数y=cosx(x∈R)的性质可得,函数y=cosx(x∈R)是周期等于2的偶函数,
故函数y=2cosx(x∈R)也是周期等于2的偶函数,
故选B.
点评:本题主要考查余弦的周期性和奇偶性,属于基础题.
解答:解:由余弦函数y=cosx(x∈R)的性质可得,函数y=cosx(x∈R)是周期等于2的偶函数,
故函数y=2cosx(x∈R)也是周期等于2的偶函数,
故选B.
点评:本题主要考查余弦的周期性和奇偶性,属于基础题.
练习册系列答案
相关题目