题目内容

如图,直三棱柱中,的中点,上的一点,

(Ⅰ)证明:为异面直线的公垂线;

(Ⅱ)设异面直线的夹角为45°,求二面角的大小.

【命题意图】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.

【参考答案】

(19)解法一:

(I)连接A1B,记A1B与AB1的交点为F.

因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.  ………………3分

作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.

又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.

所以DE为异面直线AB1与CD的公垂线.

(II)因为DG∥AB­1,故∠CDG为异面直线AB­1与CD的夹角,∠CDG=45°

设AB=2,则AB1=,DG=,CG=,AC=.

作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1-AC1-B1的平面角.

【点评】三垂线定理是立体几何的最重要定理之一,是高考的的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网