题目内容
已知向量
=(2cosx,1),向量
=(cosx,
sin2x),函数f(x)=
•
+
+
.
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为
,求
的值.
| m |
| n |
| 3 |
| m |
| n |
| 2010 |
| 1+cot2x |
| 2010 |
| 1+tan2x |
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为
| ||
| 2 |
| 1005(a+c) |
| sinA+sinC |
(1)函数f(x)=
•
+
+
=2cos2x+
sin2x+
+
=1+cos2x+
sin2x+2010=2sin(2x+
)+2011.
由 2kπ+
≤2x+
≤2kπ+
,且 x≠kπ,x≠kπ+
,k∈z,得 kπ+
≤x≤kπ+
,且x≠kπ+
,
∴单调减区间为 (kπ+
,kπ+
)∪(kπ+
,kπ+
).
(2)f(A)=2012=2sin(2A+
)+2011,∴sin(2A+
)=
,∴A=
.
又△ABC的面积为
=
bcsinA=
•1•c•
,∴c=2.
∴a=
=
,∴
=
=
=2010.
| m |
| n |
| 2010 |
| 1+cot2x |
| 2010 |
| 1+tan2x |
| 3 |
| 2010 |
| 1+cot2x |
| 2010 |
| 1+tan2x |
=1+cos2x+
| 3 |
| π |
| 6 |
由 2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 2 |
∴单调减区间为 (kπ+
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| 2π |
| 3 |
(2)f(A)=2012=2sin(2A+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
又△ABC的面积为
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
∴a=
| b2+c2-2bc•cosA |
| 3 |
| 1005(a+c) |
| sinA+sinC |
| 1005a |
| sinA |
1005×
| ||||
|
练习册系列答案
相关题目