题目内容
【题目】已知函数
.
(1)证明:当
时,
;
(2)若
有极大值,求
的取值范围;
(3)若
在
处取极大值,证明:
.
【答案】(1)见证明 (2)
(3)见证明
【解析】
(1)当
时,
,
,研究函数的单调性与最值即可证明不等式;
(2)由题设得
.由
有极大值得
有解,且
.利用极大值定义即可建立a的不等关系;
(3)由(2)知:当
时,
有唯一的极大值点
, 且
,故
,结合函数的单调性即可证明.
(1)证明:当
时,
,
,
令
,则
.
∴当
时,
,
单调递减;当
时,
,
单调递增.
∴当
时,
.
∴当
时,
,
在
上单调递增.
∴当
时,
,即
.
(2)解:由题设得
.由
有极大值得
有解,且
.
令
,则
.由
得
.
∴当
时,
,
单调递减;当
时,
,
单调递增.
∴
.
当
,即
时,
,即
,此时,
在
上单调递增,无极值;
当
,即
时,
∴
,
.
由(1)知:
,即
.
∴存在
,
,使
.
∴当
时,
,即
单调递增;当
时,
,
即
单调递减;当
时,
,即
单调递增.
∴
是
唯一的极大值点.
综上所述,所求
的取值范围为
.
(3)证明:由(2)知:当
时,
有唯一的极大值点
,
且
,故
,
由(2)知:
.
当
时,
,由(2)知:
在
上单调递增.
∴当
时,
,即
.
∴当
时,
.
综上所述,
.
【题目】某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额
(单位:万元)与年利润增长量
(单位:万元)的数据如表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
年利润增长量 | 6.0 | 7.0 | 9.0 | 11.0 | 12.0 |
(1)记
年利润增长量
投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是
万元的概率;
(2)请用最小二乘法求出
关于
的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?
参考公式:
,
;
参考数据:
,
.