题目内容

设数列{an}、{bn}(bn>0,n∈N*),满足an=
lgb1+lgb2+…+lgbnn
(n∈N*),证明:{an}为等差数列的充要条件是{bn}为等比数列.
分析:先证充分性:即若{bn}为等比数列,证出{an}为等差数列.再证必要性:即若{an}为等差数列,则{bn}为等比数列.
解答:证明:充分性:若{bn}为等比数列,设公比为q,则an=
nlgb1+lg(q•q2qn-1)
n
=
nlgb1+lgq
n(n-1)
2
n
=lgb1+(n-1)lgq^
1
2
,an+1-an=lgq^
1
2
为常数,
∴{an}为等差数列.
必要性:由an=
lgb1+lgb2++lgbn
n
得nan=lgb1+lgb2++lgbn,(n+1)an+1=lgb1+lgb2++lgbn+1
∴n(an+1-an)+an+1=lgbn+1
若{an}为等差数列,设公差为d,
则nd+a1+nd=lgbn+1
∴bn+1=10^a1+2nd,bn=10^a1+2(n-1)d
bn+1
bn
=102d为常数.
∴{bn}为等比数列.
点评:本题考查数列的性质和应用,解题时注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网