题目内容
设数列{an}、{bn}(bn>0,n∈N*),满足an=| lgb1+lgb2+…+lgbn | n |
分析:先证充分性:即若{bn}为等比数列,证出{an}为等差数列.再证必要性:即若{an}为等差数列,则{bn}为等比数列.
解答:证明:充分性:若{bn}为等比数列,设公比为q,则an=
=
=lgb1+(n-1)lgq^
,an+1-an=lgq^
为常数,
∴{an}为等差数列.
必要性:由an=
得nan=lgb1+lgb2++lgbn,(n+1)an+1=lgb1+lgb2++lgbn+1,
∴n(an+1-an)+an+1=lgbn+1.
若{an}为等差数列,设公差为d,
则nd+a1+nd=lgbn+1,
∴bn+1=10^a1+2nd,bn=10^a1+2(n-1)d.
∴
=102d为常数.
∴{bn}为等比数列.
| nlgb1+lg(q•q2qn-1) |
| n |
nlgb1+lgq
| ||
| n |
| 1 |
| 2 |
| 1 |
| 2 |
∴{an}为等差数列.
必要性:由an=
| lgb1+lgb2++lgbn |
| n |
∴n(an+1-an)+an+1=lgbn+1.
若{an}为等差数列,设公差为d,
则nd+a1+nd=lgbn+1,
∴bn+1=10^a1+2nd,bn=10^a1+2(n-1)d.
∴
| bn+1 |
| bn |
∴{bn}为等比数列.
点评:本题考查数列的性质和应用,解题时注意公式的灵活运用.
练习册系列答案
相关题目