题目内容
设正项数列{an}的前n项和为Sn,对于任意的n∈N*,点(an,Sn)都在函数f(x)=
x2+
x的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,记数列{bn}的前n项和为Tn,求Tn的最值.
| 1 |
| 4 |
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| an•an+1 |
分析:(Ⅰ)依题意,Sn=
an2+
an①,Sn+1=
an+12+
an+1②,由②-①可求得an+1-an=2.易求a1=2,从而可知正项数列{an}是以2为首项,2为公差的等差数列,可求其的通项公式;
(Ⅱ)利用裂项法可求得bn=
(
-
),从而可求得数列{bn}的前n项和为Tn.
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
(Ⅱ)利用裂项法可求得bn=
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(Ⅰ)∵Sn=
an2+
an,①
∴Sn+1=
an+12+
an+1,②
②-①得:an+1=
(an+12-an2)+
(an+1-an),
∴
(an+12-an2)=
(an+1+an),
∵an>0,
∴an+1-an=2.
又a1=
a12+
a1,
∴a1=2,
∴正项数列{an}是以2为首项,2为公差的等差数列,
∴an=2+(n-1)×2=2n.
(Ⅱ)∵an=2n,
∴bn=
=
=
(
-
),
∴Tn=b1+b2+…+bn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
| 1 |
| 4 |
| 1 |
| 2 |
∴Sn+1=
| 1 |
| 4 |
| 1 |
| 2 |
②-①得:an+1=
| 1 |
| 4 |
| 1 |
| 2 |
∴
| 1 |
| 4 |
| 1 |
| 2 |
∵an>0,
∴an+1-an=2.
又a1=
| 1 |
| 4 |
| 1 |
| 2 |
∴a1=2,
∴正项数列{an}是以2为首项,2为公差的等差数列,
∴an=2+(n-1)×2=2n.
(Ⅱ)∵an=2n,
∴bn=
| 1 |
| an•an+1 |
| 1 |
| 2n(2n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=b1+b2+…+bn
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 4 |
| 1 |
| n+1 |
=
| n |
| 4(n+1) |
点评:本题考查数列的求和,考查等差数列的判定及其通项公式,突出考查裂项法求和,属于中档题.
练习册系列答案
相关题目