题目内容
【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面
平面
.现有以下四个结论:
![]()
①AD∥平面SBC;
②
;
③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;
④
与平面SCD所成的角为45°.
其中正确结论的序号是__________.
【答案】①②④
【解析】
利用线面平行判定定理说明①的正误;利用线面平行性质定理说明②的正误;由
,讨论∠ASB的锐钝可说明③的正误;利用
与平面SCD所成的角等于AD与平面SCD所成的角可判断④的正误.
由AB和CD是圆O得直径及AB⊥CD,得四边形ABCD为正方形,则AD∥BC,
从而AD∥平面SBC,则①正确;又因为
平面SAD,且
平面
,所以
,则②正确;因为
,当∠ASB为钝角时,
;
当∠ASB为锐角或直角时,
,则③不正确;由
,得
与平面SCD所成的角等于AD与平面SCD所成的角,即为∠ADO,又因为∠ADO=45°,故④正确.
故答案为:①②④
【题目】某公司为了解某产品的获利情况,将今年1至7月份的销售收入
(单位:万元)与纯利润
(单位:万元)的数据进行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润
关于销售收入
的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润
关于销售收入的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:
,
,
,
;参考数据:
.
【题目】某地区不同身高
的未成年男性的体重平均值
如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
体重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知
与
之间存在很强的线性相关性,
(Ⅰ)据此建立
与
之间的回归方程;
(Ⅱ)若体重超过相同身高男性体重平均值的
倍为偏胖,低于
倍为偏瘦,那么这个地区一名身高
体重为
的在校男生的体重是否正常?
参考数据:![]()
附:对于一组数据
,其回归直线
中的斜率和截距的最小二乘估计分别为![]()