题目内容
已知数列{an}满足a1=1,an+1=
.
(1)求{an};
(2)记数列{an}的前n项和为Hn.
(Ⅰ)当n≥2时,求n•(Hn-Hn-1);
(Ⅱ)证明:
+
+
+…+
<2.
| an |
| 1+an |
(1)求{an};
(2)记数列{an}的前n项和为Hn.
(Ⅰ)当n≥2时,求n•(Hn-Hn-1);
(Ⅱ)证明:
| 1 | ||
1•
|
| 1 | ||
2•
|
| 1 | ||
3•
|
| 1 | ||
n•
|
考点:数列的求和,数列递推式,数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(1)取倒数,利用等差数列的性质,可求{an};
(2)(Ⅰ)直接代入计算,可得结论;
(Ⅱ)由(Ⅰ)知当i≥2时,
=(Hi-Hi-1)>0,再放缩,求和,即可证明结论.
(2)(Ⅰ)直接代入计算,可得结论;
(Ⅱ)由(Ⅰ)知当i≥2时,
| 1 |
| i |
解答:
解:(1)∵an+1=
,
∴
=
+1,
∵a1=1,∴an=
(2)(Ⅰ)当n≥2时,Hn=1+
+
+…+
,Hn-1=1+
+
+…+
,
∴n•(Hn-Hn-1)=1
(Ⅱ)由(Ⅰ)知当i≥2时,
=(Hi-Hi-1)>0,
∴
+
+
+…+
=
+(H2-H1)•
+(H3-H2)•
+…+(Hn-Hn-1)•
<
+•
+•
+…+•
=
+(
-
)++…+(
-
)=2-
<2
| an |
| 1+an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∵a1=1,∴an=
| 1 |
| n |
(2)(Ⅰ)当n≥2时,Hn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
∴n•(Hn-Hn-1)=1
(Ⅱ)由(Ⅰ)知当i≥2时,
| 1 |
| i |
∴
| 1 | ||
1•
|
| 1 | ||
2•
|
| 1 | ||
3•
|
| 1 | ||
n•
|
| 1 |
| 1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 1 |
| (H2-H1) | ||||
|
| (H3-H2) | ||||
|
| (Hn-Hn-1) | ||||
|
| 1 |
| 1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查等差数列的判断,考查数列与不等式的综合,考查学生分析解决问题的能力,确定数列的通项是关键.
练习册系列答案
相关题目
复数z=
的共轭复数是( )
| 1 |
| 1-i |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|