题目内容

若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?

精英家教网
证明:设△ABC的重心与外接圆的圆心均为O(如图)
∵OA=OC,E为AC的中点,∴BE⊥AC;
同理,CD⊥AB,AF⊥BC
在Rt△ABE与Rt△ACD中,
∠A为公共角,BE=CD=R+
1
2
R=
3
2
R(R为外接圆半径),
所以△ABE≌△ACD,AB=AC,
同理可得AB=BC
由此可知△ABC为等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网