题目内容
已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0
(1)求an
( 2 )令bn=
,求{bn}的前n项和Tn.
(1)求an
( 2 )令bn=
| 1 |
| an |
(1)∵nSn+1-(n+3)Sn=0,即nan+1=3Sn①
∴(n-1)an=3Sn-1(n≥2)②
①-②得nan+1=(n+2)an(n≥2)
∴an=
×
×
×…×
×
×
×
=
(n≥2),
a1=1也适合上式,
∴an=
(n∈N*).
(2)bn=
=
=2(
-
),
∴Tn=2(1-
+
-
+…+
-
)
=
.
∴(n-1)an=3Sn-1(n≥2)②
①-②得nan+1=(n+2)an(n≥2)
∴an=
| n+1 |
| n-1 |
| n |
| n-2 |
| n-1 |
| n-3 |
| 6 |
| 4 |
| 5 |
| 3 |
| 4 |
| 2 |
| 3 |
| 1 |
=
| n(n+1) |
| 2 |
a1=1也适合上式,
∴an=
| n(n+1) |
| 2 |
(2)bn=
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2n |
| n+1 |
练习册系列答案
相关题目