题目内容
设数列{a}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2,
(1)求当n∈N*时,
的最小值;
(2)当n∈N*时,求证:
+
+
+…+
<
.
(1)求当n∈N*时,
| Sn+64 |
| n |
(2)当n∈N*时,求证:
| 2 |
| S1S3 |
| 3 |
| S2S4 |
| 4 |
| S3S5 |
| n+1 |
| SnSn+2 |
| 5 |
| 16 |
分析:(1)利用等差数列的求和公式,求得Sn,进而利用基本不等式,可求
的最小值;
(2)利用裂项法求和,再利用放缩法,可得结论.
| Sn+64 |
| n |
(2)利用裂项法求和,再利用放缩法,可得结论.
解答:(1)解:∵a1=1,d=2,∴Sn=na1+
=n2
∴
=n+
≥2
=16(当且仅当n=8时取等号).
∴
的最小值为16.…(6分)
(2)证明:由①知Sn=n2,
=
=
[
-
]…(8分)
+
+
+…+
=
[(
-
)+(
-
)+…+(
-
)]…(10分)
=
[1+
-
-
]<
(1+
)=
即
+
+
+…+
<
.…(13分)
| n(n-1)d |
| 2 |
∴
| Sn+64 |
| n |
| 64 |
| n |
n×
|
∴
| Sn+64 |
| n |
(2)证明:由①知Sn=n2,
| n+1 |
| SnSn+2 |
| n+1 |
| n2(n+2)2 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
| 2 |
| S1S3 |
| 3 |
| S2S4 |
| 4 |
| S3S5 |
| n+1 |
| SnSn+2 |
=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 32 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 4 |
| 1 |
| 22 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 5 |
| 16 |
即
| 2 |
| S1S3 |
| 3 |
| S2S4 |
| 4 |
| S3S5 |
| n+1 |
| SnSn+2 |
| 5 |
| 16 |
点评:本题考查等差数列的求和公式,考查基本不等式的运用,考查不等式的证明,考查裂项法,属于中档题.
练习册系列答案
相关题目