题目内容
求函数y=sin(
-
x),x∈[-2π,2π]的单调增区间
| π |
| 6 |
| 1 |
| 2 |
[-2π,
]∪[
,2π]
| 2π |
| 3 |
| 4π |
| 3 |
[-2π,
]∪[
,2π]
.| 2π |
| 3 |
| 4π |
| 3 |
分析:函数y=sin(
-
x)的单调增区间满足:-
+2kπ≤
-
x≤
+2kπ,k∈Z.由此能求出结果.
| π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
解答:解:函数y=sin(
-
x)=-sin(
x-
)的单调增区间满足:
+2kπ≤
x-
≤
+2kπ,k∈Z.
解得
+4kπ≤x≤
π+4kπ,k∈Z.
∵x∈[-2π,2π],
∴函数y=sin(
-
x),x∈[-2π,2π]的单调增区间为[-2π,
]∪[
,2π].
故答案为:[-2π,
]∪[
,2π].
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
解得
| 4π |
| 3 |
| 10 |
| 3 |
∵x∈[-2π,2π],
∴函数y=sin(
| π |
| 6 |
| 1 |
| 2 |
| 2π |
| 3 |
| 4π |
| 3 |
故答案为:[-2π,
| 2π |
| 3 |
| 4π |
| 3 |
点评:本题考查正弦函数的图象及其性质的应用,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目