题目内容
数列{an}满足a1=2,对于任意的n∈N*都有an>0, 且(n+1)an2+an·an+1-nan+12=0,
又知数列{bn}的通项为bn=2n-1+1.
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
解:(1)可解得
,从而an=2n,有Sn=n2+n,
(2)Tn=2n+n-1.
练习册系列答案
相关题目
题目内容
数列{an}满足a1=2,对于任意的n∈N*都有an>0, 且(n+1)an2+an·an+1-nan+12=0,
又知数列{bn}的通项为bn=2n-1+1.
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
解:(1)可解得
,从而an=2n,有Sn=n2+n,
(2)Tn=2n+n-1.