题目内容
已知△ABC的面积为1,tanB=
,tanC=-2,求△ABC的边长及tanA.
| 1 |
| 2 |
∵tanB=
,tanC=-2,且A+B+C=π,
∴tanA=tan[π-(B+C)]=-tan(B+C)=-
=-
=
,
∵tanB=
>0,
∴0<B<
,
∴cosB=
=
,sinB=
=
,
又tanC=-2<0,∴
<C<π,
∴cosC=-
=-
,sinC=-
=-
,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=
×(-
)+
×
=
,
∴由正弦定理
=
得:a=
=
b,
∴S△ABC=
absinC=
•
b2•
=1,
解得:b=
,
∴a=
×
=
,
∴c=
=
.
| 1 |
| 2 |
∴tanA=tan[π-(B+C)]=-tan(B+C)=-
| tanB+tanC |
| 1-tanBtanC |
| ||
| 1+1 |
| 3 |
| 4 |
∵tanB=
| 1 |
| 2 |
∴0<B<
| π |
| 2 |
∴cosB=
|
2
| ||
| 5 |
| 1-cos2B |
| ||
| 5 |
又tanC=-2<0,∴
| π |
| 2 |
∴cosC=-
|
| ||
| 5 |
| 1-cos2C |
2
| ||
| 5 |
∴sinA=sin(B+C)=sinBcosC+cosBsinC=
| ||
| 5 |
| ||
| 5 |
2
| ||
| 5 |
2
| ||
| 5 |
| 3 |
| 5 |
∴由正弦定理
| a |
| sinA |
| b |
| sinB |
| bsinA |
| sinB |
| 3 | ||
|
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 | ||
|
2
| ||
| 5 |
解得:b=
| ||
| 3 |
∴a=
| 3 | ||
|
| ||
| 3 |
| 3 |
∴c=
| asinC |
| sinA |
2
| ||
| 3 |
练习册系列答案
相关题目