题目内容
已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+
)sin(x-
).
(1)求f(x)的最小正周期及单调增区间;
(2)若f(α)+g(α)=
,且α∈[
,
]求sin2α的值.
| π |
| 4 |
| π |
| 4 |
(1)求f(x)的最小正周期及单调增区间;
(2)若f(α)+g(α)=
| 5 |
| 6 |
| 3π |
| 8 |
| 5π |
| 8 |
(1)y=cos2x+sinxcosx=
+
sin2x=
sin(2x+
)+
∴T=
=π,由 2kπ-
≤2x+
≤
+2kπ k∈Z,即 kπ-
≤x≤
+kπ k∈Z,
所以函数的单调增区间为:[-
π+kπ,
+kπ] (k∈Z).
(2)g(x)=2sin(x+
)sin(x-
)=-sin(2x+
)=-cos2x,
因为f(x)+g(x)=
+
sin2x-cos2x=
+
sin2x-
cos2x=
+
sin(2x-
)
f(α)+g(α)=
,
+
sin(2α-
)=
sin(2α-
)=
α∈[
,
]
2α∈[
,
] 2α-
∈[
,π]
cos(2α-
)=-
sin2α=sin(2α-
+
)
=sin(2α-
)cos
+cos(2α-
)sin
=
×
+(-
)×
=
-
=
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
∴T=
| 2π |
| 2 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
所以函数的单调增区间为:[-
| 3 |
| 8 |
| π |
| 8 |
(2)g(x)=2sin(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
因为f(x)+g(x)=
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
f(α)+g(α)=
| 5 |
| 6 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 5 |
| 6 |
sin(2α-
| π |
| 4 |
| ||
| 3 |
| 3π |
| 8 |
| 5π |
| 8 |
2α∈[
| 3π |
| 4 |
| 5π |
| 4 |
| π |
| 4 |
| π |
| 2 |
cos(2α-
| π |
| 4 |
| ||
| 3 |
sin2α=sin(2α-
| π |
| 4 |
| π |
| 4 |
=sin(2α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| ||
| 3 |
| ||
| 2 |
| ||
| 3 |
| ||
| 2 |
| 1 |
| 3 |
| ||
| 6 |
2-
| ||
| 6 |
练习册系列答案
相关题目