题目内容
(坐标系与参数方程选做题)在极坐标系中,过点(
,
)作圆ρ=
的切线,则切线的直角坐标方程是
| 2 |
| π |
| 4 |
| 2 |
x+y-2=0
x+y-2=0
.分析:先把点的坐标、圆的方程化为直角坐标下的坐标及方程,若点在圆上,即可求出切线的斜率;若点不在圆上,利用圆心到切线的距离等于圆的半径即可求出切线的斜率.
解答:解:∵点P(
,
),∴x=
cos
=1,y=
sin
=1,∴P(1,1).
∵圆ρ=
,化为普通方程:
=
,即x2+y2=2.
∵点P(1,1)满足圆的方程,∴点P在圆上.
∵KOP=
=1,
∴过点P的圆的切线的斜率K=-
=-1,
∴过点P的圆的切线方程为y-1=-(x-1),即为x+y-2=0.
故答案为x+y-2=0
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
∵圆ρ=
| 2 |
| x2+y2 |
| 2 |
∵点P(1,1)满足圆的方程,∴点P在圆上.
∵KOP=
| 1 |
| 1 |
∴过点P的圆的切线的斜率K=-
| 1 |
| KOP |
∴过点P的圆的切线方程为y-1=-(x-1),即为x+y-2=0.
故答案为x+y-2=0
点评:充分利用圆的切线的性质是解题的关键.
练习册系列答案
相关题目