题目内容
(2011•揭阳一模)已知数列{an}是公比q>1的等比数列,且a1+a2=40,a1a2=256,又 bn=log2an.
(1)求数列{bn}的通项公式;
(2)若Tn+1-Tn=bn(n∈N*),且T1=0.求证:对?n∈N*,n≥2有
≤
<
.
(1)求数列{bn}的通项公式;
(2)若Tn+1-Tn=bn(n∈N*),且T1=0.求证:对?n∈N*,n≥2有
| 1 |
| 3 |
| n |
| i=2 |
| 1 |
| Ti |
| 3 |
| 4 |
分析:(1)解法1:根据a1+a2=40,a1a2=256,且q>1,确定数列的a1、a2的值,从而可求公比,进而可求数列{an}的通项,利用bn=log2an,可求数列{bn}的通项公式;
解法2:根据a1+a2=40,a1a2=256,且q>1,确定数列的a1、a2的值,从而可求公比,进而根据bn=log2an,可得{bn}是以3为首项,2为公差的等差数列,即可求数列{bn}的通项公式;
(2)当n≥2时,Tn-Tn-1=bn-1=2n-1,根据Tn=(Tn-Tn-1)+(Tn-1-Tn-2)+…(T3-T2)+(T2-T1)+T1,可求Tn的值,进而可得
=
=
(
-
),由此可证结论.
解法2:根据a1+a2=40,a1a2=256,且q>1,确定数列的a1、a2的值,从而可求公比,进而根据bn=log2an,可得{bn}是以3为首项,2为公差的等差数列,即可求数列{bn}的通项公式;
(2)当n≥2时,Tn-Tn-1=bn-1=2n-1,根据Tn=(Tn-Tn-1)+(Tn-1-Tn-2)+…(T3-T2)+(T2-T1)+T1,可求Tn的值,进而可得
| 1 |
| Tn |
| 1 |
| (n-1)(n+1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
解答:解:(1)解法1:∵a1+a2=40,a1a2=256,且q>1,解得
---------------(2分)
∴q=
=4,∴an=a1qn-1=8×4n-1=22n+1---------------------------------(4分)
∴bn=log2an=log222n+1=2n+1--------------------------------------------(6分)
解法2:由a1+a2=40,a1a2=256,且q>1得
,∴q=
=4------------------------------------(2分)
∴bn+1-bn=log2an+1-log2an=log
=log24=2,----------------------------(3分)
又b1=log2a1=log28=3,-------------------------------------------------------(4分)
∴{bn}是以3为首项,2为公差的等差数列,----------------------------------------(5分)
∴bn=3+(n-1)×2=2n+1;----------------------------------------------------(6分)】
(2)当n≥2时,Tn-Tn-1=bn-1=2n-1,
∴Tn=(Tn-Tn-1)+(Tn-1-Tn-2)+…(T3-T2)+(T2-T1)+T1
=(2n-1)+(2n-3)+…+5+3=
=(n-1)(n+1);---------------(8分)
∵当n≥2时,
=
=
(
-
),----------------------------(10分)
∴
=
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…(
-
)+(
-
)+(
-
)]
=
(1+
-
-
)=
-
(
+
).------(12分)
∵n≥2,∴
+
≤
+
=
∴
-
(
+
)≥
-
•
=
.
又
+
>0
∴
-
(
+
)<
即对?n∈N*,n≥2,
≤
<
.----------------------------------------------(14分)
|
∴q=
| a2 |
| a1 |
∴bn=log2an=log222n+1=2n+1--------------------------------------------(6分)
解法2:由a1+a2=40,a1a2=256,且q>1得
|
| a2 |
| a1 |
∴bn+1-bn=log2an+1-log2an=log
| an+1 |
| an |
又b1=log2a1=log28=3,-------------------------------------------------------(4分)
∴{bn}是以3为首项,2为公差的等差数列,----------------------------------------(5分)
∴bn=3+(n-1)×2=2n+1;----------------------------------------------------(6分)】
(2)当n≥2时,Tn-Tn-1=bn-1=2n-1,
∴Tn=(Tn-Tn-1)+(Tn-1-Tn-2)+…(T3-T2)+(T2-T1)+T1
=(2n-1)+(2n-3)+…+5+3=
| (n-1)(2n-1+3) |
| 2 |
∵当n≥2时,
| 1 |
| Tn |
| 1 |
| (n-1)(n+1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴
| n |
| i=2 |
| 1 |
| Ti |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| T4 |
| 1 |
| Tn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-3 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∵n≥2,∴
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 6 |
∴
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 3 |
又
| 1 |
| n |
| 1 |
| n+1 |
∴
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
即对?n∈N*,n≥2,
| 1 |
| 3 |
| n |
| i=2 |
| 1 |
| Ti |
| 3 |
| 4 |
点评:本题考查数列的通项与求和,考查不等式的证明,解题的关键是确定数列的项与公比,利用叠加法与裂项法求和,利用放缩法证明不等式.
练习册系列答案
相关题目