题目内容
【题目】已知函数f(x)=
,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+
的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
【答案】B
【解析】解:作函数f(x)=
,的图象如下,
![]()
由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;
故x3(x1+x2)+
=﹣
+x4,
其在1<x4≤2上是增函数,
故﹣2+1<﹣
+x4≤﹣1+2;
即﹣1<﹣
+x4≤1;
所以答案是:B.
【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.
练习册系列答案
相关题目