题目内容
已知向量
=(1,3),
⊥(
-2
),|
+
|=2
,则|
-
|= .
| a |
| a |
| a |
| b |
| a |
| b |
| 6 |
| a |
| b |
分析:根据平面向量数量积的定义及应用即可求向量长度.
解答:解:∵向量
=(1,3),
⊥(
-2
),
∴|
|=
=
,
•(
-2
)=
-2
•
=0,
∴
•
=
=5.
∵|
+
|=2
,
∴
+2
•
+
=24,
即10+2×5+
=24,
即
=4,
则|
-
|=
=
=
=2,
故答案为:2;
| a |
| a |
| a |
| b |
∴|
| a |
| 1+32 |
| 10 |
| a |
| a |
| b |
| a2 |
| a |
| b |
∴
| a |
| b |
| 10 |
| 2 |
∵|
| a |
| b |
| 6 |
∴
| a2 |
| a |
| b |
| b2 |
即10+2×5+
| b2 |
即
| b2 |
则|
| a |
| b |
|
| 10-2×5+4 |
| 4 |
故答案为:2;
点评:本题主要考查平面向量数量积的计算,要求熟练掌握平面向量数量积的应用,比较基础,
练习册系列答案
相关题目