题目内容
幂函数
【答案】分析:根据幂函数的系数一定为1可先确定参数m的值,再根据单调性进行排除,可得答案.
解答:解:∵函数
是幂函数
∴可得m2-m-1=1,解得m=-1或2
当m=-1时,函数为y=x3在区间(0,+∞)上单调递增,满足题意
当m=2时,函数为y=x在(0,+∞)上不是增函数,不满足条件
故答案为:-1.
点评:本题主要考查幂函数的表达形式以及幂函数的单调性,属于基础题.
解答:解:∵函数
∴可得m2-m-1=1,解得m=-1或2
当m=-1时,函数为y=x3在区间(0,+∞)上单调递增,满足题意
当m=2时,函数为y=x在(0,+∞)上不是增函数,不满足条件
故答案为:-1.
点评:本题主要考查幂函数的表达形式以及幂函数的单调性,属于基础题.
练习册系列答案
相关题目
函数
[
]|
A .m=-1或2 |
B . |
C .m=2 |
D .m=-1 |
函数
是幂函数且在xÎ
(0,+∞)时为减函数,则实数m的值为
[ ]
|
A.m=-1或2 |
B. |
C.m=2 |
D.m=-1 |