题目内容
已知向量
=(cos
,sin
),
=(cos
,-sin
),
=(
,-1),其中x∈R.
(1)当
⊥
时,求x值得集合;
(2)求|
-
|的最大、最小值.
| a |
| 3x |
| 2 |
| 3x |
| 2 |
| b |
| x |
| 2 |
| x |
| 2 |
| c |
| 3 |
(1)当
| a |
| b |
(2)求|
| a |
| c |
(1)∵
⊥
,
∴
•
=cos
cos
-sin
sin
=cos2x=0,
解得2x=
+kπ,化为x=
+
(k∈Z).
∴x值的集合为{x|x=
+
(k∈Z)};
(2)∵|
|=
=1,|
|=
=2.
∴| |
|-|
| |≤|
-
|≤|
|+|
|,
∴1≤|
-
|≤3.
∴|
-
|的最大、最小值分别为3,1.
| a |
| b |
∴
| a |
| b |
| 3x |
| 2 |
| x |
| 2 |
| 3x |
| 2 |
| x |
| 2 |
解得2x=
| π |
| 2 |
| kπ |
| 2 |
| π |
| 4 |
∴x值的集合为{x|x=
| kπ |
| 2 |
| π |
| 4 |
(2)∵|
| a |
cos2
|
| c |
(
|
∴| |
| a |
| c |
| a |
| c |
| a |
| c |
∴1≤|
| a |
| c |
∴|
| a |
| c |
练习册系列答案
相关题目