ÌâÄ¿ÄÚÈÝ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£®
£¨1£©Ö±ÏßlµÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóÖ±ÏßlµÄÇúÏßC½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©

·ÖÎö £¨1£©½«Ö±ÏßÖ±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt£¬¼´¿É»¯ÎªÆÕͨ·½³Ì£¬½«$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë$\sqrt{3}x-y-2\sqrt{3}$=0¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©CÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$»¯ÎªÆÕͨ·½³Ì£¬ÓëÖ±Ïß·½³ÌÁªÁ¢¿ÉµÃ½»µã×ø±ê£¬ÔÙ»¯Îª¼«×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©½«Ö±ÏßÖ±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt£¬»¯ÎªÆÕͨ·½³Ì$\sqrt{3}x-y-2\sqrt{3}$=0£¬
½«$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë$\sqrt{3}x-y-2\sqrt{3}$=0µÃ$\sqrt{3}¦Ñcos¦È-¦Ñsin¦È-2\sqrt{3}$=0£®
£¨2£©CÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬
»¯ÎªÆÕͨ·½³ÌΪx2+y2-4x=0£®
ÁªÁ¢$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$½âµÃ£º$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=\sqrt{3}}\end{array}\right.$£¬
¡àlÓëC½»µãµÄ¼«×ø±ê·Ö±ðΪ£º$£¨2£¬\frac{5¦Ð}{3}£©$£¬$£¨2\sqrt{3}£¬\frac{¦Ð}{6}£©$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄ½»µã£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø