题目内容

在海岸A处,发现北偏东45°方向,距A处(
3
-1
)海里的B处有一艘走私船,在A处北偏西75°的方向,距离A处2海里的C处的缉私船奉命以10
3
海里/每小时的速度追截走私船,此时,走私船正以10海里/每小时的速度从B处向北偏东30°方向逃窜.问:缉私船沿什么方向能最快追上走私船?
分析:设缉私船追上走私船需t小时,进而可表示出CD和BD,进而在△ABC中利用余弦定理求得BC,进而在△BCD中,根据正弦定理可求得sin∠BCD的值,即可得到缉私船沿什么方向能最快追上走私船.
解答:解:如图所示,设缉私船追上走私船需t小时,
则有CD=10
3
t,,BD=10t.在△ABC中,
∵AB=
3
-1
,AC=2,
∠BAC=45°+75°=120°.
根据余弦定理BC2=AB2+AC2-2AB•ACcos∠BAC=(
3
-1)2+22+2×(
3
-1)×2×
1
2
=6可求得BC=
6

sin∠ABC=
AC
BC
•sin∠BAC=
2
6
3
2
=
2
2
,∴∠ABC=45°,∴BC与正北方向垂直,
∵∠CBD=90°+30°=120°.
在△BCD中,根据正弦定理可得
sin∠BCD=
BD•sin∠CBD
CD
=
10t•sin120°
10
3
t
=
1
2

∴∠BCD=30°
所以缉私船沿东偏北30°方向能最快追上走私船.
点评:本题主要考查了解三角形的实际应用.考查了运用三角函数的基础知识解决实际的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网