题目内容

在海岸A处,发现北偏东45°方向,距离A(
3
-1)
nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以10
3
nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.
(1)求线段BC的长度;
(2)求∠ACB的大小;
(参考数值:sin15°=
6
-
2
4
,cos15°=
6
+
2
4

(3)问缉私船沿北偏西多少度的方向能最快追上走私船?
分析:(1)在△ABC中,∠CAB=120°由余弦定理可求得线段BC的长度;
(2)在△ABC中,由正弦定理,可求得sin∠ACB;
(3)设缉私船用t h在D处追上走私船,CD=10
3
t,BD=10t,在△ABC中,可求得∠CBD=120°,再在△BCD中,由正弦定理可求得sin∠BCD,从而可求得答案.
解答:解:(1)在△ABC中,∠CAB=45°+75°=120°,…(1分)
由余弦定理,得BC2=AB2+AC2-2AB•ACcos∠CAB…(2分)
=(
3
-1)
2
+22-2×(
3
-1)×2×(-
1
2
)=6,…(3分)
所以,BC=
6
.…(4分)
(2)在△ABC中,由正弦定理,得
AB
sin∠ACB
=
BC
sin1200

所以,sin∠ACB=
AB•sin1200
BC
…(6分)
=
3
-1
2
2
=
6
-
2
4
.…(7分)
又∵0°<∠ACB<60°,
∴∠ACB=15°.…(8分)
(3)设缉私船用t h在D处追上走私船,如图,
则有CD=10
3
t,BD=10t.
在△ABC中,
又∠CBD=90°+30°=120°,
在△BCD中,由正弦定理,得
sin∠BCD=
BD•sin∠CBD
CD
 …(8分)
=
10t•sin120°
10
3
t
=
1
2
.…(10分)
∴∠BCD=30°,
又因为∠ACB=15°…(12分)
所以1800-(∠BCD+∠ACB+75°)=180°-(30°+15°+75°)=60°
即缉私船沿北偏东60°方向能最快追上走私船.?…(14分)
点评:本题考查余弦定理与正弦定理,考查解三角形,考查综合分析与运算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网