题目内容
已知:a>0,b>0,a+b=1,(1)求证:
a+
|
b+
|
(2)求:
| 1 |
| a |
| 1 |
| b |
| 1 |
| ab |
分析:(1)由基本不等式可得ab≤
,故有
≤1,从而有 2+2
≤4,即(
+
)2≤4,可得不等式成立.
(2)根据基本不等式可得ab≤
,而
+
+
=
,从而求出所求.
| 1 |
| 4 |
(a+
|
(a+
|
a+
|
b+
|
(2)根据基本不等式可得ab≤
| 1 |
| 4 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| ab |
| 2 |
| ab |
解答:解:(1)证明:因为1=a+b≥2
,所以ab≤
,所以
(a+b)+ab+
≤1,
所以
≤1,从而有 2+2
≤4,
即:(a+
)+(b+
)+2
≤4,
即:(
+
)2≤4,所以原不等式成立.
(2)
+
+
=
,
∵a>0,b>0,a+b=1,
∴
≤
=
,即ab≤
当且仅当a=b=
是等号成立
∴
+
+
=
≥8,即当a=b=
时,
+
+
的最小值为8.
| ab |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
所以
(a+
|
(a+
|
即:(a+
| 1 |
| 2 |
| 1 |
| 2 |
(a+
|
即:(
a+
|
b+
|
(2)
| 1 |
| a |
| 1 |
| b |
| 1 |
| ab |
| 2 |
| ab |
∵a>0,b>0,a+b=1,
∴
| ab |
| a+b |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
∴
| 1 |
| a |
| 1 |
| b |
| 1 |
| ab |
| 2 |
| ab |
| 1 |
| 2 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| ab |
点评:本题考查用综合法证明不等式,得到:(a+
)+(b+
)+2
≤4,是解题的关键.
| 1 |
| 2 |
| 1 |
| 2 |
(a+
|
练习册系列答案
相关题目