题目内容
已知互相垂直的平面交于直线l.若直线m,n满足 则
A.m∥l B.m∥n C.n⊥l D.m⊥n
若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是
(A) (B) (C) (D)
= 。
如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .
已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
设数列{}的前项和为.已知=4,=2+1,.
(Ⅰ)求通项公式;
(Ⅱ)求数列{}的前项和.
已知,方程表示圆,则圆心坐标是_____,半径是______.
已知函数.设.
(1)求方程=2的根;
(2)若对任意,不等式恒成立,求实数m的最大值;
(3)若,函数有且只有1个零点,求ab的值。
已知是等比数列,前n项和为,且.
(Ⅰ)求的通项公式;
(Ⅱ)若对任意的是和的等差中项,求数列的前2n项和.