题目内容
已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是( )A.f(-x1)>f(-x2) B.f(-x1)<f(-x2)
C.f(-x1)=f(-x2) D.f(-x1)与f(-x2)的大小关系不能确定
A
解析:y=f(x+1)是偶函数f(x+1)=f(-x+1)f(x+2)=f(-x).
又x1+x2<-2,-x1>2+x2>2,
故f(-x1)>f(2+x2)=f(-x2).
练习册系列答案
相关题目
已知函数y=f(x+
)为奇函数,设g(x)=f(x)+1,则g(
)+g(
)+g(
)+g(
)+…+g(
)=( )
| 1 |
| 2 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 3 |
| 2011 |
| 4 |
| 2011 |
| 2010 |
| 2011 |
| A、1005 | B、2010 |
| C、2011 | D、4020 |