ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÓò¿·Ö×ÔÈ»Êý¹¹ÔìÈçϵÄÊý±í£ºÓÃaij(i¡Ýj)±íʾµÚiÐеÚj¸öÊý(i¡¢jΪÕýÕûÊý)£¬Ê¹ail=aii=i £»Ã¿ÐÐÖÐµÄÆäÓà¸÷Êý·Ö±ðµÈÓÚÆä¡°¼ç°ò¡±ÉϵÄÁ½¸öÊýÖ®ºÍ(µÚÒ»¡¢¶þÐгýÍ⣬Èçͼ)£¬ÉèµÚn(nΪÕýÕûÊý)ÐÐÖи÷ÊýÖ®ºÍΪbn£®
£¨1£©ÊÔд³öb2Ò»2b1£»£¬b3-2b2£¬b4-2b3,b5-2b4£¬²¢ÍƲâbn+1ºÍbnµÄ¹ØÏµ(ÎÞÐèÖ¤Ã÷)£»
£¨2£©Ö¤Ã÷ÊýÁÐ{bn+2}ÊǵȱÈÊýÁУ¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽbn£»
£¨3£©ÊýÁÐ{ bn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br(p£¬q£¬rΪÕýÕûÊý)Ç¡ºÃ³ÉµÈ²îÊýÁÐ?Èô´æÔÚÇó³öP£¬q£¬rµÄ¹ØÏµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©bn+1-2 bn=2£¨2£©bn =3¡Á2n-1-2£¨3£©²»´æÔÚ
½âÎö:
£¨1£©bl=1,£»b2=4£»b3=10£»b4=22£»b5=46£º
¿É¼û£ºb2-2 bl=2£»b3-2 b2=2£»b4-2 b3=2£»b5-2 b4=2
²Â²â£ºbn+1-2 bn=2 (»òbn+1=2 bn+2»òbn+1- bn=3¡Á2n-1)
£¨2£©ÓÉ£¨1£© ![]()
ËùÒÔ{bn+2}£¬ÊÇÒÔb1+2=3ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡à bn+2=3¡Á2n-1 ,¼´bn =3¡Á2n-1-2¡£¡£-
(×¢£ºÈô¿¼ÂÇ£¬
ÇÒ²»ÌÖÂÛn=1£¬¿Û1·Ö)
£¨3£©ÈôÊýÁÐ{ bn }ÖдæÔÚ²»Í¬µÄÈýÏîbp, bq , br(p,q,r¡ÊN)Ç¡ºÃ³ÉµÈ²îÊýÁУ¬²»·ÁÉèp>q>r,ÏÔÈ»£¬{ bn }ÊǵÝÔöÊýÁУ¬Ôò2 bq= bp, + br
¼´2¡Á£¨3¡Á2q-1-2£©=£¨3¡Á2p-1-2£©+£¨3¡Á2r-1-2£©,ÓÚÊÇ2¡Á2q-r=2q-r+1
ÓÉp,q,r¡ÊNÇÒp>q>rÖª£¬q-r¡Ý1£¬p-r¡Ý2
¡àµÈʽµÄ×ó±ßΪżÊý£¬ÓÒ±ßÎªÆæÊý£¬²»³ÉÁ¢£¬¹ÊÊýÁÐ{bn}Öв»´æÔÚ²»Í¬µÄÈýÏîbp£¬bq£¬br(p,q,r¡ÊN)Ç¡ºÃ³ÉµÈ²îÊýÁÐ--