题目内容

如图,正方体ABCDA1B1C1D1中,E为棱CC1的中点.

(1)求证:AC1∥平面BED

(2)求二面角A1BDE的大小.

解法一:(1)方法一:证明:连结ACBDO,连结OE.                              ?

E为棱CC1的中点,?

又∵在正方形ABCD中,OAC的中点,?

OEAC1.                                                                                                            ?

又∵OE平面BEDAC1平面BED,?

AC1∥平面BED.                                                                                                        

?

方法二:证明:∵=++??

=++2??

=(+)+(+)?

=+,                                                                                                                ?

又∵不共线,∴共面.?

又∵AC1平面BED,∴AC1∥平面BED.                                                                      ?

(2)解:连结A1OA1E.                                                                                      ?

在等边△A1BD中,A1OBD,?

∵△BEC≌△DEC,?

BE=DE.又∵OBD中点,?

OEBD.∴∠A1OE为二面角A1-BD-E的平面角.                                                        ?

在正方体ABCDA1B1C1D1中,设棱长为2a,?

E为棱CC1的中点,由平面几何知识得?

EO=aA1O=aA1E=3a.                                                                                   ?

方法一:∴cos∠A1OE=

?

==0.?

∴∠A1OE=90°.?

故二面角A1-BD-E为90°.                                                                                       ?

方法二:∵A1E2=A1O2+EO2,∴∠A1OE=90°.?

故二面角A1-BD-E为90°.                                                                                       ?

解法二:如图所示建立空间直角坐标系A-xyz, 设AD=2a.

(1)方法一:A(0,0,0),C2a2a,0),C12a2a2a).?

连结ACBDO,连结OE.?

OAC中点,∴Oa,a,0).?

ECC1中点,∴E2a2aa).?

=(2a2a2a),=(aaa).?

=2.∴.                                                                                ?

又∵AC1OE不共线,∴AC1OE.?

OE平面BEDAC1平面BED,?

AC1∥平面BED.                                                                                                        

?

方法二:=(0,2a,a),=(2a,0,a),=(2a,2a,2a).?

假设存在实数xy,使=x+y,?

解得

=+.                                                                                                ?

又∵不共线.∴共面.?

又∵AC1平面BED,∴AC1∥平面BED.                                                                      ?

(2)方法一:连结A1OOE.在等边△A1BD中,A1OBD.?

∵△BEC≌△DEC,?

BE=DE.?

又∵OBD中点,?

OEBD.∴∠A1OE为二面角A1-BD-E的平面角.                                                        ?

=(-a,-a,2a),=(a,a,a),                                                                      ?

∴cos〈,〉=?

==0.?

∴〈,〉=90°.故二面角A1-BD-E为90°.                                               ?

方法二:=(-2a2a,0),=(0,2aa),=(-2a,0,2a),?

设平面A1BD的法向量为n=(x,y,z),?

n·=0及n·=0,得x=1,y=z=1,则n=(1,1,1).                  ?

设平面BED的法向量为m=(x,y,z),?

m·=0,m·=0,得y=1,则x=1,z=-2.?

m=(1,1,-2).                                                                                                   ?

cos〈n,m〉===0.?

∴〈n,m〉=90°.?

故二面角A1-BD-E为90°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网