题目内容
已知数列{an}、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(Ⅰ)求数列{bn}的通项公式;
( II)求数列{
}的前n项和Dn;
( III)若数列{bn}的前n项和为Sn,设 Tn=S2n-Sn,求证:Tn+1>Tn.
(Ⅰ)求数列{bn}的通项公式;
( II)求数列{
| 2n |
| bn |
( III)若数列{bn}的前n项和为Sn,设 Tn=S2n-Sn,求证:Tn+1>Tn.
(Ⅰ)由bn=an-1得 an=bn+1代入 an-1=an(an+1-1),
得 bn=(bn+1)bn+1,整理得 bn-bn+1=bnbn+1.(2分)
∵bn≠0,否则 an=1,与 a1=2矛盾.
从而得
-
=1,
∵b1=a1-1=1
∴数列 {
}是首项为1,公差为1的等差数列.(4分)
∴
=n,即bn=
.(6分)
(II)
=n•2n
∴Dn=2+2•22+3•23+…+n•2n(1)
∴2Dn=1•22+2•23+3•24+…+n•2n+1(2)(6分)
-Dn=2+22+23+…+2n-n•2n+1=
-n•2n+1,
∴Dn=(n-1)2n+1+2.(8分)
(III)∵Sn=1+
+
+…+
,
∴Tn=S2n-Sn=(1+
+
+…+
+
+…+
)-(1+
+
+…+
)
=
+
+…+
.(12分)
证法1:∵Tn+1-Tn=
+
+…+
-(
+
+…+
)
=
+
-
=
-
=
>0
∴Tn+1>Tn.(14分)
证法2:∵2n+1<2n+2,
∴
>
,
∴Tn+1-Tn>
+
-
=0.
∴Tn+1>Tn.(12分)
得 bn=(bn+1)bn+1,整理得 bn-bn+1=bnbn+1.(2分)
∵bn≠0,否则 an=1,与 a1=2矛盾.
从而得
| 1 |
| bn+1 |
| 1 |
| bn |
∵b1=a1-1=1
∴数列 {
| 1 |
| bn |
∴
| 1 |
| bn |
| 1 |
| n |
(II)
| 2n |
| bn |
∴Dn=2+2•22+3•23+…+n•2n(1)
∴2Dn=1•22+2•23+3•24+…+n•2n+1(2)(6分)
-Dn=2+22+23+…+2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴Dn=(n-1)2n+1+2.(8分)
(III)∵Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∴Tn=S2n-Sn=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
证法1:∵Tn+1-Tn=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| (2n+1)(2n+2) |
∴Tn+1>Tn.(14分)
证法2:∵2n+1<2n+2,
∴
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴Tn+1-Tn>
| 1 |
| 2n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
∴Tn+1>Tn.(12分)
练习册系列答案
相关题目