题目内容
【题目】已知幂函数
为偶函数,且在区间
内是单调递增函数.
(1)求函数
的解析式;
(2)设函数
,若
对任意
恒成立,求实数
的取值范围.
【答案】(1)
;(2)![]()
【解析】
(1)由幂函数f(x)
(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.可得﹣m2+2m+3>0,且﹣m2+2m+3为偶数,解出即可得出.
(2)分类参数
,依题意,
>[(x+1)2-1]max.
(1)∵幂函数f(x)
(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
∴﹣m2+2m+3>0,且﹣m2+2m+3为偶数,
解得m=1,
∴f(x)=x4.
(2)函数g(x)
2x+c=x2+2x
,
g(x)<0,化为
>x2+2x=(x+1)2-1.
∵g(x)<0对
恒成立,
∴
>[(x+1)2-1]max=3,当且仅当x=1时取等号.
∴实数c的取值范围是
>3.
练习册系列答案
相关题目