题目内容

若不等式
a2+b2
2
k(a+b)
对任意正数a,b恒成立,则实数k的最大值为(  )
A.
1
2
B.1C.2D.
2
2
由不等式
a2+b2
2
k(a+b)
可得 K2
a2b2
2(a+b)2
,故k2 小于或等于
a2+b2
2(a+b)2
 的最小值.
a2+b2
2(a+b)2
=
a2+b2
2(a2+b2+2ab)
a2+b2
2(2a2+2b2)
=
1
4
,故
a2+b2
2(a+b)2
的最小值等于
1
4

故 k2
1
4
,∴k≤
1
2

故选 A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网