题目内容
已知数列{an},{bn},{cn}满足:a1=b1=1,且有an+1-an=
=
(n=1,2,3,…),cn=anbn,试求
(c1+c2+…+cn).
| bn+1 |
| bn |
| 1 |
| 2 |
| lim |
| n→∞ |
| 1 |
| n |
分析:根据题意可得,{an}是1为首项,
为公差的等差数列,{bn}是1为首项,
为公比的等比数列,从而可求得an,bn,从而可得cn=(n+1)•(
)n,利用错位相减法可求得Sn=3-(n+3)(
)n,
=
-(1+
)(
)n,从而可得答案.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| Sn |
| n |
| 3 |
| n |
| 3 |
| n |
| 1 |
| 2 |
解答:解:∵a1=b1=1,an+1-an=
=
,
∴{an}是1为首项,
为公差的等差数列,{bn}是1为首项,
为公比的等比数列,
∴an=
,bn=(
)n-1…3′
cn=
•(
)n-1=(n+1)•(
)n…5′
Sn=c1+c2+…+cn=2×
+3×(
)2+…+(n+1)(
)n,①
Sn=2×(
)2+3×(
)3+…+n×(
)n+(n+1)(
)n+1,②
①-②得:
∴
Sn=1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1=
-(n+3)(
)n+1,
∴Sn=3-(n+3)(
)n…10′
∴
=
[
-(1+
)(
)n]=0…12′
| bn+1 |
| bn |
| 1 |
| 2 |
∴{an}是1为首项,
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| n+1 |
| 2 |
| 1 |
| 2 |
cn=
| n+1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
Sn=c1+c2+…+cn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②得:
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴Sn=3-(n+3)(
| 1 |
| 2 |
∴
| lim |
| n→∞ |
| Sn |
| n |
| lim |
| n→∞ |
| 3 |
| n |
| 3 |
| n |
| 1 |
| 2 |
点评:本题考查数列的极限,着重考查等差数列与等比数列的通项公式与数列求和公式的应用,突出了错位相减法求和及数列的极限的求法,属于综合性强的题目.
练习册系列答案
相关题目