题目内容
设a、b、c∈R,求证:aabbcc≥
证明:∵a、b、c∈R,要证原不等式成立,
即证lg(aabbcc)=alga+blgb+clgc,
(lga+lgb+lgc),
设a≤b≤c,则lga≤lgb≤lgc.
由顺序和≥乱序和,得
alga+blgb+clgc=alga+blgb+clgc,
alga+blgb+clgc≥algb+blgc+clga,
alga+blgb+clgc≥algc+clgb+blga.
三式相加,得
3(alga+blgb+clgc)≥(lga+lgb+lgc)(a+b+c),
即alga+blgb+clgc≥
(lga+lgb+lgc),
∴原不等式成立.
练习册系列答案
相关题目