题目内容

设a、b、c∈R,求证:aabbcc.

证明:∵a、b、c∈R,要证原不等式成立,

即证lg(aabbcc)=alga+blgb+clgc,

(lga+lgb+lgc),

设a≤b≤c,则lga≤lgb≤lgc.

由顺序和≥乱序和,得

alga+blgb+clgc=alga+blgb+clgc,

alga+blgb+clgc≥algb+blgc+clga,

alga+blgb+clgc≥algc+clgb+blga.

三式相加,得

3(alga+blgb+clgc)≥(lga+lgb+lgc)(a+b+c),

即alga+blgb+clgc≥(lga+lgb+lgc),

∴原不等式成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网