题目内容

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•xn的值为(  )

 

A.

B.

C.

D.

1

考点:

利用导数研究曲线上某点切线方程;直线的斜率.

专题:

计算题;压轴题.

分析:

欲判x1•x2•…•xn的值,只须求出切线与x轴的交点的横坐标即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答:

解:对y=xn+1(n∈N*)求导得y′=(n+1)xn

令x=1得在点(1,1)处的切线的斜率k=n+1,在点

(1,1)处的切线方程为y﹣1=k(xn﹣1)=(n+1)(xn﹣1),

不妨设y=0,

则x1•x2•x3…•xn=××

故选B.

点评:

本小题主要考查直线的斜率、利用导数研究曲线上某点切线方程、数列等基础知识,考查运算求解能力、化归与转化思想.属于基础题.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网