题目内容

如图,在△ABC中,∠BAC=120°,AB=1,AC=2,D为BC边上一点,且
DC
=2
BD
,则
AD
BC
=
1
3
1
3
分析:把向量
AD
BC
分别用
AB
AC
表示即可求出.
解答:解:∵∠BAC=120°,AB=1,AC=2,∴
AB
AC
=1×2×cos120°
=-1.
DC
=2
BD
,∴
AD
=
AC
+
CD
=
AC
+
2
3
CB
=
AC
+
2
3
(
AB
-
AC
)
=
2
3
AB
+
1
3
AC

又∵
BC
=
AC
-
AB

AD
BC
=(
2
3
AB
+
1
3
AC
)•(
AC
-
AB
)
=
1
3
AB
AC
-
2
3
AB
2
+
1
3
AC
2
=-
1
3
-
2
3
×1+
1
3
×22
=
1
3

故答案为
1
3
点评:熟练掌握向量的运算和数量积运算是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网