题目内容

已知函数f(x)=的定义域是集合A,函数g(x)=lg[x2-(2a+1)x+a2+a]的定义域是集合B。
(1)分别求集合A、B;
(2)若A∪B=B,求实数a的取值范围。
解:(1)要使函数有意义,需
且x-2≠0

解得x≤-1或x>2,
故A={x|x≤-1或x>2}
要使有意义

即x<a或x>a+1,
故集合B={x|x<a或x>a+1};
(2)由A∪B=B得AB,因此
所以-1<a≤1
所以实数a的取值范围是(-1,1]。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网