题目内容
【题目】已知函数f(x)=sin(x+
)+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0,
),f(α+
)=
,求f(2α)的值.
【答案】
(1)解:f(x)=sin(x+
)+cosx=
sinx+
cosx+cosx=
sinx+
cosx
=
sin(x+
),
当x+
=2kπ+
,
即x=2kπ+
,k∈Z时,函数f(x)取得最大值
.
此时x的取值集合是{x|x=2kπ+
,k∈Z}
(2)解:由(1)知f(x)=
sin(x+
),
∵f(α+
)=
,
∴f(α+
)=)=
sin(
+α+
)=
cosα=
,
∴cosα=
,
∵α∈(0,
),
∴sinα=
,
sin2α=2sinαcosα=2×
=
,
cos2α=2cos2α﹣1=﹣
,
∴f(2α)=
=
sin2α+
cos2α=
=
.
【解析】(1)利用两角和差的正弦公式以及辅助角公式将函数f(x)进行化简,结合三角函数的图象和性质即可求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;(2)根据条件求出sinα和cosα的值,利用二倍角公式进行化简求值.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:
.
练习册系列答案
相关题目