题目内容
6.设$\overrightarrow{a}$、$\overrightarrow{b}$是两个不平行的非零向量,且x(2$\overrightarrow{a}$+$\overrightarrow{b}$)+y(3$\overrightarrow{a}$-2$\overrightarrow{b}$)=7$\overrightarrow{a}$,x、y∈R,求实数x、y的值.分析 利用向量相等列出方程组求解即可.
解答 解:$\overrightarrow{a}$、$\overrightarrow{b}$是两个不平行的非零向量,且x(2$\overrightarrow{a}$+$\overrightarrow{b}$)+y(3$\overrightarrow{a}$-2$\overrightarrow{b}$)=7$\overrightarrow{a}$,x、y∈R,
可得$\left\{\begin{array}{l}{2x+3y=9}\\{x-2y=0}\end{array}\right.$,
解得x=$\frac{18}{7}$,y=$\frac{9}{7}$.
点评 本题考查向量相等的充要条件的应用,考查计算能力.
练习册系列答案
相关题目
14.已知P(x,y)是中心在原点,焦距为4$\sqrt{2}$的双曲线上一点,且$\frac{y}{x}$的取值范围为(-1,1),则该双曲线的方程是( )
| A. | x2-y2=8 | B. | y2-x2=8 | C. | x2-y2=4 | D. | y2-x2=4 |
1.点M(π,-m)在函数y=cosx-1的图象上,则m的值为( )
| A. | -2 | B. | 0 | C. | 1 | D. | 2 |
11.
函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,将函数f(x)的图象向右平移$\frac{π}{6}$个单位后得到的函数图象的解析式为( )
| A. | y=sin2x | B. | y=sin(2x+$\frac{π}{3}$) | C. | y=sin(2x+$\frac{π}{6}$) | D. | y=sin(2x-$\frac{π}{3}$) |