题目内容
.设函数![]()
(Ⅰ)当
曲线
处的切线斜率
(Ⅱ)求函数的单调区间与极值;
(Ⅲ)已知函数
有三个互不相同的零点0,
,且
。若对任意的
,
恒成立,求m的取值范围。
【答案】
解析:当![]()
所以曲线
处的切线斜率为1.(2)
,令
,得到
因为![]()
当x变化时,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极小值 |
|
极大值 |
|
在
和
内减函数,在
内增函数。
函数
在
处取得极大值
,且
=![]()
函数
在
处取得极小值
,且
=![]()
(3)由题设, ![]()
所以方程
=0由两个相异的实根
,故
,
且
,解得![]()
因为![]()
若
,而
,不合题意
若
则对任意的
有![]()
则
又
,所以函数
在
的最小值为0,于是对任意的
,
恒成立的充要条件是
,解得
综上,m的取值范围是![]()
【解析】略
练习册系列答案
相关题目