题目内容
选修4-4 极坐标与参数方程
已知曲线的极坐标方程为,曲线(为参数).
(1)求曲线的普通方程;
(2)若点在曲线上运动,试求出到曲线的距离的最小值.
若对任意,都有,那么在上………………( )
A、一定单调递增 B、一定没有单调减区间
C、可能没有单调增区间 D、一定没有单调增区间
当时,曲线与曲线有相同的( )
A.焦点 B.准线 C.焦距 D.离心率
将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
已知函数在处的切线与直线垂直,函数.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数b的取值范围;
(3)设是函数的两个极值点,若,求的最小值.
若偶函数在上单调递减,,,,则满足( )
A. B. C. D.
设数列的前项和为,已知,,(),是数列的前项和.
(1)求数列的通项公式;
(2)求满足的最大正整数的值.
已知分别为内角A,B,C的对边,,且.
(1)求A;
(2)若,求的面积.
如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.
(1)求椭圆的标准方程;
(2)设为抛物线上的两个动点,且使得线段的中点在直线上,
为定点,求面积的最大值.