题目内容
已知数列{an},an∈N*,前n项和Sn=
(an+2)2.
(1)求证:{an}是等差数列;
(2)若bn=
an-30,求数列{bn}的前n项和的最小值.
| 1 |
| 8 |
(1)求证:{an}是等差数列;
(2)若bn=
| 1 |
| 2 |
(1)证明:∵an+1
=Sn+1-Sn
=
(an+1+2)2-
(an+2)2,
∴8an+1=(an+1+2)2-(an+2)2,
∴(an+1-2)2-(an+2)2=0,(an+1+an)(an+1-an-4)=0.
∵an∈N*,∴an+1+an≠0,
∴an+1-an-4=0.
即an+1-an=4,∴数列{an}是等差数列.
(2)由(1)知a1=S1=
(a1+2),解得a1=2.∴an=4n-2,
bn=
an-30=2n-31,(以下用两种方法求解)
法一:
由bn=2n-31可得:首项b1=-29,公差d=2
∴数列{bn}的前n项和sn=n2-30n=(n-15)2-225
∴当n=15时,sn=225为最小;
法二:
由
0得
≤n<
.∵n∈N*,∴n=15,
∴{an}前15项为负值,以后各项均为正值.
∴S5最小.又b1=-29,
∴S15=
=-225
=Sn+1-Sn
=
| 1 |
| 8 |
| 1 |
| 8 |
∴8an+1=(an+1+2)2-(an+2)2,
∴(an+1-2)2-(an+2)2=0,(an+1+an)(an+1-an-4)=0.
∵an∈N*,∴an+1+an≠0,
∴an+1-an-4=0.
即an+1-an=4,∴数列{an}是等差数列.
(2)由(1)知a1=S1=
| 1 |
| 8 |
bn=
| 1 |
| 2 |
法一:
由bn=2n-31可得:首项b1=-29,公差d=2
∴数列{bn}的前n项和sn=n2-30n=(n-15)2-225
∴当n=15时,sn=225为最小;
法二:
由
|
| 29 |
| 2 |
| 31 |
| 2 |
∴{an}前15项为负值,以后各项均为正值.
∴S5最小.又b1=-29,
∴S15=
| 15(-29+2×15-31) |
| 2 |
练习册系列答案
相关题目