题目内容
函数y=x2+2x在[-4,3]上的最大值为
______.
由题意可知:
y=(x+1)2-1
所以二次函数的开口向上,对称轴为x=-1.
故函数在[-4,-1]上为减函数,函数在[-1,3]上为增函数.
所以,函数在x=3时取得最大值.
∴最大值为32+2×3=15.
故答案为:15.
y=(x+1)2-1
所以二次函数的开口向上,对称轴为x=-1.
故函数在[-4,-1]上为减函数,函数在[-1,3]上为增函数.
所以,函数在x=3时取得最大值.
∴最大值为32+2×3=15.
故答案为:15.
练习册系列答案
相关题目
函数y=x2-2x在-2处的导数是( )
| A、-2 | B、-4 | C、-6 | D、-8 |