题目内容

已知函数f(x)=x3+ax2+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围( )
A.(,2)
B.(,4)
C.(1,2)
D.(1,4)
【答案】分析:据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.
解答:解:∵f(x)=
∴f′(x)=x2+ax+2b
∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值
∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根
f′(0)>0,f′(1)<0,f′(2)>0

(a+3)2+b2表示点(a,b)到点(-3,0)的距离的平方,
由图知(-3,0)到直线a+b+2=0的距离,平方为为最小值,
(-3,0)与(-1,0)的距离2,平方为4为最大值
故选项为B
点评:本题考查函数极值存在条件及线性规划求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网