题目内容

(2012•安徽)设向量
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),若(
a
+
c
)⊥
b
,则|
a
|=
2
2
分析:
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),知
a
+
c
=(3,3m),由(
a
+
c
)⊥
b
,知(
a
+
c
b
=3(m+1)+3m=0,由此能求出||
a
|
解答:解:∵
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),
a
+
c
=(3,3m),
∵(
a
+
c
)⊥
b

∴(
a
+
c
b
=3(m+1)+3m=0,
∴m=-
1
2
,即
a
=(1,-1)

|
a
|
=
2

故答案为:
2
点评:本题考查数量积判断两个平面向量的垂直关系的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网