题目内容
(2012•安徽)设向量
=(1,2m),
=(m+1,1),
=(2,m),若(
+
)⊥
,则|
|=
.
| a |
| b |
| c |
| a |
| c |
| b |
| a |
| 2 |
| 2 |
分析:由
=(1,2m),
=(m+1,1),
=(2,m),知
+
=(3,3m),由(
+
)⊥
,知(
+
)•
=3(m+1)+3m=0,由此能求出||
|.
| a |
| b |
| c |
| a |
| c |
| a |
| c |
| b |
| a |
| c |
| b |
| a |
解答:解:∵
=(1,2m),
=(m+1,1),
=(2,m),
∴
+
=(3,3m),
∵(
+
)⊥
,
∴(
+
)•
=3(m+1)+3m=0,
∴m=-
,即
=(1,-1)
∴|
|=
.
故答案为:
.
| a |
| b |
| c |
∴
| a |
| c |
∵(
| a |
| c |
| b |
∴(
| a |
| c |
| b |
∴m=-
| 1 |
| 2 |
| a |
∴|
| a |
| 2 |
故答案为:
| 2 |
点评:本题考查数量积判断两个平面向量的垂直关系的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目