题目内容
(2012•北京)已知﹛an﹜是等差数列,sn为其前n项和.若a1=
,s2=a3,则a2=
| 1 | 2 |
1
1
.分析:由﹛an﹜是等差数列,a1=
,S2=a3,知
+
+d=
+2d,解得d=
,由此能求出a2.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:∵﹛an﹜是等差数列,a1=
,S2=a3,
∴
+
+d=
+2d,
解得d=
,
a2=
+
=1.
故答案为:1.
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解得d=
| 1 |
| 2 |
a2=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:1.
点评:本题考查等差数列的性质和应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目